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Abstract

Increasing evidence supports a role for small extracellular vesicles (sEV, including exosomes) in Diffuse Large B-cell
lymphoma (DLBCL) progression and resistance to treatment. CD20 and PD-L1 are found on DLBCL-derived sEV, but lit-
tle is known about their patient-level heterogeneity. Moreover, the capacity of PD-L17 sEV to modulate T cells needs
to be clarified. Herein we analyzed sEV produced by human DLBCL cell lines and EBV-transformed B cell-lymphoblas-
toid cell lines (LCLs), a model allowing autologous T cell co-cultures. We determined CD20 and PD-L1 levels on plasma
SEV from patient samples vs healthy volunteers (HV). sEV functional relevance was also investigated on CD4*

and CD8* T cells. sEV derived from all cell lines showed an enrichment of CD20 and a high glycosylated PD-L1 expres-
sion when compared to cell lysates. High PD-L1 expression on LCL-derived sEV was associated with higher CD4*

and CD8* T cell apoptosis. In patients, plasma sEV concentration was higher vs HV. Compared to sEV-CD20 level

that seemed higher in patients, PD-L1 level in sEV was not different from those of HV. A high glycosylated PD-L1 level
was shown in sEV from both patients and HV plasma samples, that was associated with the same inhibiting effect

on activated T cells. We conclude that sEV derived from EBV-transformed B cells realize an immunosuppressive role
that involved cell-cell interaction and probably at least PD-L1. Furthermore, our findings suggest the potential of cir-
culating sEV as a source of biomarkers in DLBCL, notably to have information on immunotherapeutic target levels

of parental tumor cells.
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To the editor,

In Diffuse large B-cell lymphomas (DLBCL), even though
PD-L1 expression has been associated with poor over-
all survival [1], most patients with relapsed/refractory
DLBCL are less sensitive to PD-1 blockade [2]. Few
subtypes of NHLs with specific genetic alterations or
immunologic properties appear to be more responding,
including Epstein-Bar virus (EBV)-associated lympho-
mas, where PD-L1 expression is upregulated through
EBV infection [3]. However, PD-L1 expression is not
restricted to tumor cell surface. In solid tumors PD-L1
was also found on extracellular vesicles such as exosomes
that could limit the clinical benefit of PD-1/PD-L1 immu-
notherapy [4, 5]. Exosomes are small extracellular vesi-
cles (sEV, 50-150 nm) of endosomal origin, secreted by
normal and tumoral cells during exocytic fusion of multi-
vesicular bodies (MVBs) with the plasma membrane [6].
They regulate intercellular communication by transfer of
signaling molecules like proteins, lipids and nucleic acid
cargos. Current knowledge shows their important role
in the development and progression of cancer, includ-
ing DLBCL [7, 8]. Interestingly, they may also contribute
to drug resistance. We have previously analyzed CD20
levels on sEV derived from ABC and GCB DLBCL cell
lines, and demonstrated in a preclinical model sEV role

(See figure on next page.)
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in protecting tumors from the rituximab cytotoxicity [9].
However, heterogeneity of CD20 level on circulating sEV
has not been evaluated in patients. Of note, enhanced
PD-L1*"-sEV in the plasma of DLBCL patients compared
to healthy volunteers (HV) was recently suggested [10].
In this work, we first characterized CD20 and PD-L1
expression on sEV produced by EBV-transformed B cell-
lymphoblastoid cell lines (LCLs), known to express high
levels of PD-L1 [11], compared to those of DLBCL cell
lines. We used sEV from LCLs to explore the functional
interaction of sEV on autologous T cells. Finally, we
investigated CD20 and PD-L1 levels on plasma sEV sam-
ples derived from DLBCL patients vs HV, and analyzed
sEV functional relevance on CD4" and CD8* peripheral
T cells.

sEV production (included exosomes) by all cell lines
was characterized for size distribution and concentration
using nanoparticle tracking analysis (NTA), and protein
markers (i.e. Alix, TSG101, CD81 and CD63) were con-
firmed by western blot analysis of sEV lysates (Fig. 1A, B).
CD20 and PD-L1 expressions were examined at the cel-
lular and vesicular levels by western blot and flow cytom-
etry. CD20 level found in LCL- and DLBCL-derived sEV
was higher than those of parental cell lines, suggesting an
enrichment of CD20 in sEV (Fig. 1B). Interestingly, lower
expression of CD20 by LCL-derived sEV was associated,
as for DLBCL-derived sEV, with lower binding capacity
to rituximab (i.e. C1504 LCL, Fig. S1) and CD20 targets
on DLBCL derived-sEV act also as “decoy-receptors”

Fig. 1 Characterization, phenotypic and functional analysis of small extracellular vesicles (sEV) produced by human lymphoblastoid cell lines (LCLs)
as compared to DLBCL cell lines. A Nanoparticles tracking analysis and representative plots showing size distributions and concentrations of EV
produced by 20.1 0% LCL (i.e. J1209) and 30.10° DLBCL (i.e. SUDHL6) cell lines after 72 h of culture. Plots represent the mean value (black line) with SD
(red shaded area) from 5 recordings. B Western blot analysis of PD-L1 (total and glycosylated form) and CD20 protein expression in whole cell
lysates (WCL) and sEV lysates for LCL (J1209, C0401, C1504), GCB (SUDHL6) and ABC (OCILY3, U2932) cell lines. 10 ug of proteins extracted from WCL
and sEV were loaded. CD81 and CD63 were used as sEV-protein markers, and TSG101 and Alix as specific exosomes markers. Actin was used

as loading protein control. PD-L1 glycosylation was confirmed after western blot analysis in the presence or absence of a recombinant glycosidase,
PNGase F (data not shown). C Flow cytometry analysis of surface PD-L1 expression on LCLs (J1209, C0401 and C1504) and DLBCL (SUDHL6, OCILY3
and U2932) cell lines. Representative histograms of are shown (left) for C1504 and SUDHL6. Results (right) represent the means +SD of the Mean
Fluorescence Intensity (MFI) ratio (MFI PD-L1/MFl isotype control) from 3 independent experiments. D Representative flow cytometry gating
strategy used to identify anti-CD81 immunocaptured stV (left). Representative histograms of CD81 staining (anti-CD81-APC or isotype control
conjugated antibody) on beads-sEV complexes are shown for C1504 and SUDHL6 (right) showing that the majority of sEV samples were CD81
positive (>93%) which confirms the effectiveness of sEV immunocapture. E Flow cytometry analysis of PD-L1 expression on sV for 3 LCL and 3
DLBCL cell lines. Data are expressed as means + SD of MFI ratio of PD-L1 staining to isotype control, from 2 (LCL) and 3 (DLBCL) independent
experiments. F Representative confocal microscopy analysis images of PD-L1 (red) and CDé3 (green) localization are shown in J1209 and C1504
permeabilized LCLs. Co-localization of CD63 and PD-L1 staining are indicated in the merged images and in the zoomed insets (white arrows).
Nuclei were counter stained with DAPI. Isotype controls staining are shown in the right. G Flow cytometry analysis of the interaction (2 h)

of PKH67-labeled stV derived from J1209 and C1504 LCLs with stimulated and unstimulated primary allogenic T cells. Representative contour plots
showing primary T cells gating based on scatters parameters (top) and PKH67 fluorescence vs forward scatter channel (FSC) (bottom) are shown.
Data are representative of 2 independent experiments realized in duplicate. H sEV uptake by human primary T cells was also analyzed by confocal
microscopy from the same cultures. Representative analysis showing uptake of PKH67 labeled sEV (green) derived from J1209 LCL by stimulated
and unstimulated primary T cells (stained with anti-CD3-APC, red) after 2 h of incubation. Co-localization of CD3 and PKH67 staining are indicated
in the merged images and in the zoomed insets (white arrows). Nuclei was stained with DAPI. PKH67 controls are shown in the right. Data are
representative of 2 independent experiments.
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Fig. 1 (See legend on previous page.)

for obinutzumab (GA101) (Fig. S2). High expression of
PD-L1 was observed in all LCL-derived sEV that was
relatively homogenous, in contrast to those of DLBCL.
PD-L1 level on sEV was also analyzed by flow cytometry

after immunocapture using anti-CD81 coated magnetic
beads (Fig. 1D, E). As we previously reported for CD20
[9], PD-L1 level was not related to the DLBCL subtype,
but seemed reflect that of parental cells (Fig. 1B, C, E).



Akil et al. Experimental Hematology & Oncology (2024) 13:53

Of note, colocalization of PD-L1 and CD63 in MVBs was
observed using confocal microscopy suggesting PD-L1
in the precursor form of exosomes (Fig. 1F). Interest-
ingly, using E1L3N anti-PD-L1 antibody that recognizes
glycosylated PD-L1, we observed higher glycosylated
PD-L1 levels in sEV lysates derived from LCL, and with
a lesser extend from DLBCL, compared to cell lysates
(Fig. 1B). As N-linked glycosylation of PD-L1 was shown
to increase PD-L1/PD-1 interaction, and consequently
immunosuppression [12], results strongly suggest a high
immunomodulatory capacity of sEV, notably with those
from LCL.

We thus explored the immunomodulatory capacity of
LCL-derived sEV using PKH-labeled sEV. We showed
that LCLs-derived sEV are captured by peripheral T cells
that was strongly enhanced after activation (Fig. 1G, H).
Surprisingly, using autologous T lymphocytes, LCL-
derived sEV induced apoptosis in CD4* and CD8™ after
24 h and 48 h, as demonstrated for sEV with high PD-L1
(i.e. derived from J1209 LCL) (Fig. 2A—C). Of note, apop-
tosis was reduced with sEV carrying lesser PD-L1 levels
(i.e. derived from C0401 LCL, data not shown). Upregu-
lation of death receptors after T cell activation could be
also involved in this apoptosis as previously reported
with DLBCL cell line-derived exosomes and a human T
cell line [7].

To address the role of PD-L1*-sEV in patients, we
characterized sEV isolated from plasma samples of 15
DLBCL patients versus 17 HV using the NTA technol-
ogy. No difference in particle size was found; however,
sEV concentration was significantly higher in plasma
of DLBCL patients than in HV samples (Fig. 2D, E). As
for DLBCL cell lines, plasma sEV concentration seemed

(See figure on next page.)
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not influenced by the DLBCL subtype (data not shown).
Interestingly, CD20 and PDL-1 strong expressions were
demonstrated in sEV lysates of patients. CD20 levels
tended to be increased in sEV from patients compared to
HV (ELISA and western blot analysis, Fig. 2F, G respec-
tively). We observed a great variability of CD20 level on
patient SEV samples using ELISA that could reflect that
of tumor cells, while this information was not avail-
able with the immunohistochemical analysis of parental
tumor biopsy samples (data not shown). Indeed, due to
data limitations, notably semi-quantification of CD20
expression on tumor tissue that was not performed, we
cannot conclude on a possible correlation between CD20
expression on tumor samples and sEVs. Such a correla-
tion would make it possible to propose monitoring the
CD20 level on plasma sEV of patients as a more sensi-
tive method to inform clinicians on the CD20 status of
parental tumor cells. SEV PD-L1 expression was more
homogeneous than for CD20, and PD-L1 level was high
in both HV and patient samples (ELISA and western blot
analysis, Fig. 2H and I respectively); furthermore, no sig-
nificant difference was found between patients and HV.
Interestingly, as for cell lines-derived sEV, we observed
high glycosylated PD-L1 in sEV lysates derived from
patients and HV (Fig. 2 I). To evaluate the immunomod-
ulatory activity of plasma-derived sEV on T cells, we
developed a 7-color antibody panel for functional phe-
notyping of CD4" and CD8*. Efficiency of our protocol
was demonstrated by a strong expression of several early
activation markers (i.e. CD25, CD69 and PD-1) after T
cell activation (Fig. 2J). When plasma sEV derived from
2 patients and 2 HV were co-cultured with allogenic T
cells, we observed a downward trend in activated T-cell

Fig. 2 Evaluation of the immunomodulatory function of LCL-derived sEV in an autologous model, and of plasma stV derived from patients. A
Representative contour plots showing the gating strategy used to identify purified autologous CD4* and CD8" peripheral T cells. sEV from LCL

with a high PD-L1 level (i.e. J1209, 5 ug) were co-incubated (sEV) or not (control) with autologous activated T cells for 24 and 48 h. Representative
cytograms of activated CD4" (B) and CD8* (C) T cells examined for apoptosis following AnnexinV-FITC/7-AAD staining. Percentages of Annexin V*
CD4* and Annexin V* CD8* T cells are shown (right). Data are the means+SD from 3 independent experiments. **, ***: p<0.01 or 0.001 respectively.
D Characterization of plasma derived-sEV from newly diagnosed DLBCL patients compared to age-matched healthy donors. Representative

NTA of sEV obtained from healthy volunteers (HV, N=17) and patients (P, N=15) plasma samples. Plots represent the mean value (black line)

with standard error (red shaded area) of 4 recordings. E Plasma derived-sEV from DLBCL patients revealed higher concentrations than those of HV.
Box plots indicating median and quartiles are done for the two groups, and means are indicated by crosses. sEV were purified from HV and DLBCL
(P, patients) plasma samples and analyzed by F ELISA and G western blotting for the expression of CD20. For ELISA results are expressed as box
plots indicating median and quartiles for the two groups (N=10 among 18 samples tested and N=5 among 16 samples tested for HV and DLBCL
patients respectively, remaining samples were apparently negative as they were below the detection threshold). Flotillin 2 was used as sEV

marker protein. Quantification of PD-L1 levels were also performed by ELISA (H) with data expressed as box plots indicating median and quartiles
for the two groups and western blot (I) where CD81 and CD63 expressions were used as sEV marker proteins for western blot analysis. J Functional
activity of plasma-derived sEV from 2 patients (sEV P1 or P2) or from 2 healthy volunteers (sEV HV1 or HV2) on allogenic T cells activated or not for
48 h. Markers commonly related to T cell activation (i.e. CD25, CD69) and PD1 expression were analyzed by flow cytometry on CD4" and CD8* T
cells. Histograms represent the percentage of positive T cells = SD for each activation marker, alone or in association (double positive PD1*CD69*
and CD25*CD69* T cells) as compared to respective isotype Ab staining (triplicate). The horizontal line indicates % of CD25*CD69* positive cells

in activated T cell cultures without sEV. The gating strategy used for the identification of CD4* and CD8* peripheral T cells from PBMCs is shown

in Fig. S3
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percentages and notably for the CD25TCD69* T cells,
without effect on viability (data not shown). This reduc-
tion was observed for CD4" and CD8* T cells with sEV
of patients but also HV (Fig. 2J), that could be explained
by the high level of PD-L1 found also in HV-derived sEV.

In conclusion, we demonstrated the immunosuppres-
sive role of sEV derived from several EBV-transformed
B cells that involved cell—-cell interaction and probably
at least PD-L1. Furthermore, we showed that circulating
sEV from DLBCL patients exhibited high CD20 and gly-
cosylated-PD-L1 levels which may explain immunother-
apy resistance. Our results suggest the benefit of using

WPD1+
1 CD69+
CD25+
PD1+ CD69+
CcD8+ M CD25+ CD69+

Percentages of CD8+

peripheral sEV in monitoring cancer progression, notably
to have indirect information of the immunotherapeutic
target level of parental tumor cells.
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